G4120: Introduction to Computational Biology

Oliver Jovanovic, Ph.D.
Columbia University
Department of Microbiology & Immunology
“Chromosomes from different sets (or genoms) of Triticum vulgare show affinity toward each other.”
– Cytologia I. 14, 1930

“The inviability of deficient genomes in the haploid generation serves to some extent as an alternative distinction between mutation and deficiency.”
– Proc. 6th Int. Congr. Genetics I. 275, 1932

“There are two species having genoms resembling C. neglecta.”
– Proc. 6th Int. Congr. Genetics II. 5, 1932

“The appearance of such terms as gene-complex and genome (denoting a set of chromosomes as a working unity) testify to the movement towards holism in genetics.”
– C. P. Blacker Eugenics x. 243, 1952

“Among organisms with chromosomes, each species has a characteristic set of genes, or genome. In diploids a genome is found in each normal gamete. It consists of a full set of the different kinds of chromosomes.”

“The human genome...consists of perhaps as many as 10 million genes.”
Genomics

Genetic Maps
Restriction Fragment Length Polymorphisms (RFLPs), Variable Number of Tandem Repeat Polymorphisms (VNTRs), Microsatellite Polymorphisms, Single Nucleotide Polymorphisms (SNPs), Linkage Analysis

Physical Maps
Chromosomal Maps, Radiation Hybrid Maps, Expressed Sequence Tags (ESTs), Simple Sequence Length Polymorphisms (SSLPs), Random Sequence Maps

Genome Sequences
Sequencing, Assembly, Gene Prediction, Annotation

Functional Genomics
Microarrays, Genomic Transcription Analysis, Proteomics, Disease, Pharmacogenomics

Comparative Genomics
Phylogenomics, Paleogenomics, Metabolic Reconstruction

Genomics in the Future
Direct Sequencing, DNA Computing, Nanotechnology
A Short History of Genomics

1977 øX174 genome (5,386 bp) sequenced. First complete viral genome.

1995 Haemophilus influenzae genome (1.8 Mbp) and Mycoplasma genitalium genome (0.58 Mbp) sequenced and assembled using whole genome shotgun sequencing by The Institute for Genomic Research (TIGR). First complete microbial genomes.

1996 Saccharomyces cerevisiae genome (12.1 Mbp) sequenced (first complete eukaryotic).

1997 Escherichia coli genome (4.7 Mbp) published.

1998 Caenorhabditis elegans genome (100 Mbp) is published (first complete multicellular).

1999 Deinococcus radiodurans genome (2.6 Mbp) sequenced.

2000 Pseudomonas aeruginosa genome (6.3 Mbp) published. Arabidopsis thaliana genome (100 Mbp) sequenced. Drosophila melanogaster genome (180 Mbp) sequenced by Celera, Inc.

2001 Human genome (3.4 Gbp) published separately by Celera, Inc. and the Human Genome Project. It appears to have approximately 25,000 genes (not 10 million).

2002 Mouse genome (3.4 Gbp) published.

2004 Legionella pneumophila genome (3.4 Mbp) published.

2005 Pan troglodytes genome (3.6 Gbp) published.

2006 Apis mellifera genome (234 Mbp) published.

2007 Rhesus genome (3.5 Gbp) published.
Genomes Sequenced

<table>
<thead>
<tr>
<th>Year</th>
<th>Genomes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1996</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1997</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>1998</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1999</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>2000</td>
<td>14</td>
<td>39</td>
</tr>
<tr>
<td>2001</td>
<td>40</td>
<td>79</td>
</tr>
<tr>
<td>2002</td>
<td>39</td>
<td>118</td>
</tr>
<tr>
<td>2003</td>
<td>46</td>
<td>174</td>
</tr>
<tr>
<td>2004</td>
<td>128</td>
<td>233</td>
</tr>
<tr>
<td>2005</td>
<td>115</td>
<td>348</td>
</tr>
<tr>
<td>2006</td>
<td>138</td>
<td>486</td>
</tr>
<tr>
<td>2007</td>
<td>208</td>
<td>694</td>
</tr>
<tr>
<td>2008</td>
<td>205</td>
<td>899</td>
</tr>
<tr>
<td>2009 (to date)</td>
<td>189+</td>
<td>1,088+</td>
</tr>
</tbody>
</table>

Large sequenced genomes (bacteria, archaea, and eukaryotes) in the Kyoto Encyclopedia of Genes and Genomes (KEGG). Depending on the species, however, the function of 30% to 50% of the predicted genes in these genomes remains unknown.
Intraspecies Genomic Variation

<table>
<thead>
<tr>
<th>Organism</th>
<th>Size</th>
<th># of genes</th>
<th>Coding density</th>
<th>%G+C</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli K-12 isolate W3110</td>
<td>4,636,552 bp</td>
<td>4,085</td>
<td>1,135 bp/gene</td>
<td>51%</td>
</tr>
<tr>
<td>E. coli K-12 isolate MG1655</td>
<td>4,639,221 bp</td>
<td>4,397</td>
<td>1,055 bp/gene</td>
<td>51%</td>
</tr>
<tr>
<td>E. coli O157:H7 substrain EDL93</td>
<td>5,529,376 bp</td>
<td>5,283</td>
<td>1,047 bp/gene</td>
<td>51%</td>
</tr>
<tr>
<td>E. coli O157:H7 substrain RIMD 0509952</td>
<td>5,498,450 bp</td>
<td>5,361</td>
<td>1,026 bp/gene</td>
<td>51%</td>
</tr>
</tbody>
</table>

- In *E. coli*, the size of the genome varies from 4.6 to 5.5 Mbp.
- The number of genes varies from 4,085 to 5,361 and the coding density varies from 79% to 88%.
- The G+C content does not vary, however. All four strains of *E. coli* are 51% G+C.
Interspecies Genomic Variation

Prokaryotes

- Genome size varies from 0.58 Mbp (Mycoplasma genitalium) to 9 Mbp (Nostoc punctiforme). The bacterial endosymbiont Carsonelaa ruddii is only 159.7 Kbp.
- Number of predicted genes varies from 500 to 8,000, and is closely related to the size of the genome.

Eukaryotes

- Genome size varies from 12.6 Mbp (the green alga Ostreococcus tauri) to 3.2 Gbp (Homo sapiens) to 129 Gbp (the marbled lungfish Protopterus aethiopicus) to 670 Gbp (Amoeba dubia) to 1.37 Tbp (the free-living amoeba Chaos chaos). The cryptomonad nucleomorph of Guillardia theta is only 0.55 Mbp while the plant-parasitic nematode Pratylenchus coffeae is 19 Mbp.
- The number of predicted genes in a genome varies from 2,000 to 100,000, but is not necessarily related to the size of the genome.
- In eukaryotes, there appears to be no clear correlation between the characteristic genome size of a species (C-value) and the apparent complexity of the species or number of predicted genes. The Fugu rubripes genome, which is one tenth the size of the human genome, appears to have the same number of genes.
- Eukaryotes exhibit isochores, which are long segments of uniform G+C content which can be classified into distinct families (L1, L2, H1, H2, H3, etc.). Some isochores are associated with coding regions, i.e. H3 isochores.
- Eukaryotic chromosomes vary in their coding density. They can be gene-rich or gene-poor. Only 5-10% of a vertebrate genome consists of coding regions.
Causes of Genomic Variation

Duplications
- Genome duplication
- Chromosomal duplication
- Replication slippage
- Unequal crossing over
- Rolling circle DNA amplification

Insertions
- Retroviral retroposons
- Long interspersed nuclear elements (LINEs)
- Short interspersed nuclear elements (SINEs)
- DNA transposons
- Plasmids

Deletions
- Replication slippage
- Unequal crossing over

Rearrangements
- Chromosomal rearrangements
- Transposition
- Recombination

Point Mutations
- Synonymous
- Nonsynonymous
Human Genome Assembly and Annotation Process

INPUTS
- genomic clone sequences
- mRNA sequences
- EST sequences
- Finished chromosome specifications
- Chromosome tiling paths
- Genetic maps

DATA FREEZE
- curate contigs of finished sequence
- prepare genomic sequences
- filter mRNA and EST sequences
- align sequences
- assemble genomic contigs
- define arrangement of genomic contigs along each chromosome

BUILD CYCLE
- produce gene models based on mRNA and EST alignments
- produce gene models by ab initio gene prediction
- consolidate gene models
- identify known genes from predicted genes
- annotate SNPs
- annotate STSs
- annotate clones
- annotate mRNAs and proteins

RELEASE
- make reference sequences for genomic contigs, model mRNAs and model proteins
- make BLAST databases
- make files for FTP
- load map data into Map Viewer database
- switch Map Viewer, BLAST, FTP, etc. to new data
- prepare data for non-sequence based maps
- prepare data for sequence based maps
- cytogentic data
- other data

Public Access New Build

Lecture 9
Genomics
November 18, 2009
Directed Cloning
A ordered series of overlapping fragments is prepared, typically by a series of deletions from one end of a larger fragment. The assembly is trivial, but construction is slow, and sequencing redundancy is low.

Primer Walking
A series of sequencing reactions is performed, each based on information derived from the prior round of sequencing, with new sequencing primers designed after each round. Although the assembly is trivial, this approach is slow, and regions that are difficult to prime or accurately sequence can cause problems.

Shotgun Sequencing
Randomly generated short fragments, typically created by shearing or restriction, are sequenced with high redundancy. The complete sequence is then derived by computational assembly. This approach is generally the fastest and most cost effective, and currently the most popular.
Reading Sequence Data

Tracking
Need to correctly identify the lanes in the sequencing gel. This is typically automatically handled by the sequencing unit.

Base Calling
Need to correctly interpret the electropherogram peaks into sequence data by properly calling each base. Quality values are assigned to each base called. Miscalls, spurious deletions and spurious insertions are possible problems.
Software: Sequencher, phred, Acelmby

Read Size
Currently typical read size from a single sequencing run is 500 to 800 bp. Large templates, such as those generated by large vectors (e.g. YACs) are harder to read directly, so smaller vectors (e.g. M13) are generally used.
Assembling Sequence Data

Assembly
Computationally reconstructing the complete sequence from the sequenced fragments. Although a simple process for bacterial genomes, this can be difficult for genomes with extensive repeats (e.g. *Homo sapiens*) or genomes with extreme G+C content that are difficult to sequence accurately (e.g. *Dictyostelium discoideum*).

Software: Sequencher, phrap, Acembly

Primer Design
Primer design is critical to walking strategies, and may be used with other strategies to close gaps, test quality, improve quality, or verify a particular region.

Software: Primer, Oligo, MacVector
Genome Analysis

Fundamentals

- **Quality Control**: test accuracy, compare sequence data to overlapping clones
- **Annotation**: name, source, library, method and references
- **Mapping**: generate predicted restriction maps and compare to existing data, compare sequence data to genetic maps

Compositional Analysis

- **G+C content**: G+C content graphs, isochore identification
- **Complexity analysis**: identify regions of high or low information content
- **Linguistic analysis**: CpG island identification, expected vs. observed word frequencies, hexamer frequency analysis
- **DNA structure prediction**: bendability mapping, triple helix predictions, nucleosome mapping, chromatin structure modeling

Repeat Analysis

- **Masking**: can mask repeats with RepeatMasker or other software to ease assembly or analysis
- **Extracting**: extract repeats to ease assembly or reconstruct ancestral pre-insertion sequences
Gene Finding

Coding Regions: identify coding and non-coding regions

Intron-Exon Structure: identify splice sites and assemble a properly spliced product

Control Elements: identify promoters, enhancers, repressor sites and other control elements

Comparative Genomics

Internal: look for related regions within the same genome

External: compare to other genomes, look for missed genes, construct phylogenies, reconstruct metabolic pathways

Publication

Final Annotation: check to make sure errors are not being propagated, including false positive or false negatives from database searches, and check genome, protein and organismal context carefully

Sequence Submission: BankIt (simple web submission to the NCBI), or Sequin (stand alone tool for electronic submission of large or complex sequences to the NCBI).
E. coli Genome Annotation

Intrinsic Curvature

Stacking Energy

Position Preference

Annotations:
- CDS
- CDS
- tRNA
- rRNA

DNase I Sensitivity

Propeller Twist

Protein Deformability

A+T Content

Resolution: 928

Center for Biological Sequence Analysis
http://www.cbs.dtu.dk/
Human Genome Annotation

The Sequence of the Human Genome

J.C. Venter et al. – **FIGURE 1**

COLOR GRADIENT FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>G+C CONTENT:</td>
<td>Asymmetric Ranges (per 25 kbp)</td>
</tr>
<tr>
<td>SNP DENSITY:</td>
<td>Logarithmic Scale (per 100 kbp)</td>
</tr>
</tbody>
</table>

GENE AUTHORITY

- Green: RefSeq
- Blue: Otto
- Red: Gene Prediction

GENE ONTOLOGY CATEGORIES

- Cell Adhesion
- Cell Cycle Regulator
- Chaperone
- Defense/Immunity Protein
- Enzyme
- Enzyme Regulator
- Ligand Binding or Carrier
- Motor Protein
- Nucleic Acid Binding
- Signal Transduction
- Structural Protein
- Transporter
- Tumor Suppressor
- Unknown
Genome Resources

PEDANT
Allows quick access and automatic and exhaustive analysis of genomic DNA and protein sequences, ranging from individual sequences to sets of sequences to complete genomes. Includes general, protein function, taxonomy and protein structure information.
http://pedant.gsf.de/

Kyoto Encyclopedia of Genes and Genomes (KEGG)
Includes general genome information, as well as detailed metabolic pathway charts and orthologous genes for many genomes.
http://www.genome.jp/kegg/

NCBI Clusters of Orthologous Groups (COG)
Clusters of orthologous groups of proteins delineated by comparing protein sequences encoded in 66 complete genomes. Each COG consists of individual proteins or groups of paralogs from at least 3 lineages and thus corresponds to an ancient conserved domain.

Microbial Genome Database for Comparative Analysis (MBGD)
Allows for comparative analysis of microbial genomes, including searching for likely homologs among all sequenced microbial genomes, with homology assigned strictly by sequence similarity.
http://mbgd.genome.ad.jp/
Mycoplasma genitalium
A Quick Guide to Sequenced Microbial Genomes
A descriptive guide to over 180 fully sequenced microbial genomes published by The Genome News Network.
http://www.genomenewsnetwork.org/resources/sequenced_genomes/genome_guide_p1.shtml

NCBI Entrez Genomes and Genomic Biology Resources
Completely sequenced genomes and in progress genome sequences at NCBI. All three main domains of life – bacteria, archaea, and eukaryota – are represented, including over 300 microbes, as well as over 3,000 viruses and organelles.

The J. Craig Venter Institute (JCVI/TIGR)
The JCVI (formerly TIGR) makes a comprehensive microbial genome resource available, as well as making a number of its genomic software tools available to academic researchers for free.
http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi
http://www.jcvi.org/cms/research/software/

Database of Genome Sizes
A list of known genome sizes maintained by the Center for Biological Sequence Analysis.
http://www.cbs.dtu.dk/databases/DOGS/index.php