Lecture 8
Introduction to Protein Analysis

November 4, 2004

G4120: Introduction to Computational Biology

Oliver Jovanovic, Ph.D.
Columbia University
Department of Microbiology

Copyright © 2004 Oliver Jovanovic, All Rights Reserved.
Analysis of Protein Sequences

Coding Region Prediction
Start/Stop, Uneven Positional Base Frequency, Hexamer Frequency, Hidden Markov Models (HMM)

Protein-Protein Comparison
Dotplots, Needleman-Wunsch, Smith-Waterman, FastA, BLAST

Functional Region Prediction
Motifs, Profiles, Hidden Markov Models

Secondary Structure Prediction
Kyte-Doolittle, Chou-Fasman, Markov Models, Neural Nets

Tertiary Structure Prediction
Threading, Homology Modeling, Model Verification, Abi-initio Modeling
Stochastic Modeling

Stochastic Model
A model involving chance or probability.

Random Numbers ➔ Stochastic Model ➔ Data
Markov State

A Markov state emits a symbol each time you visit it. It connects to other states (and possibly itself), with transition probabilities attached. The sum of the transition probabilities is 1.

\[
\begin{align*}
E & \quad 0.6 \quad \rightarrow \quad 0.3 \quad \rightarrow \quad L \\
H & \quad \rightarrow \quad 0.1 \quad \rightarrow \quad E \\
L & \quad \rightarrow \quad H \\
E & \quad \rightarrow \quad 0.6 \quad \rightarrow \quad E
\end{align*}
\]

E = Extended
H = Helix
L = Loop

Source
http://www.bioinfo.rpi.edu
Markov Chain
A Markov chain is an interlinked chain, or network, of states connected by transition probabilities.

E = Extended
H = Helix
L = Loop

Source
http://www.bioinfo.rpi.edu
Transition Matrix

A transition matrix for a first order Markov chain, the simplest kind. The sum of the transition probabilities from each state is 1.

\[
\begin{array}{ccc}
H & E & L \\
H & 0.93 & 0.01 & 0.06 \\
E & 0.01 & 0.80 & 0.19 \\
L & 0.04 & 0.06 & 0.90 \\
\end{array}
\]

E = Extended
H = Helix
L = Loop

Source
http://www.bioinfo.rpi.edu
Hidden Markov Model (HMM)

A hidden Markov model consists of two Markov chains connected such that a one to one correspondence between the state and the emitted symbol no longer exists.

Model 1 — Transitions between models — Model 2

Source
http://www.bioinfo.rpi.edu
Coding Region Prediction

Start/Stop
Searches for start codons followed by a stop codon. Although a coding region must start and stop this way, this cannot predict the likelihood of a region to code for a protein product.
Example: DNA Strider

Uneven Positional Base Frequency
Noncoding regions possess a more random distribution of nucleotides. This method uses the relative abundance of nucleotides in each possible codon position to predict coding regions.
Example: Staden

Hexamer Frequency
The distribution of hexamer frequencies in coding and noncoding regions differs markedly, and can be used to predict coding regions with a high degree of accuracy (70-80%).
Example: SeqStat

Neural Networks
Neural networks trained on known coding and noncoding regions in a particular species, can be used to predict new coding regions with a very high degree of accuracy (81-96%).
Example: GRAIL (http://compbio.ornl.gov/grailexp/)
Generation (http://compbio.ornl.gov/generation/)

Hidden Markov Models
Hidden Markov models, based on known coding and noncoding regions in a particular species, can be used to predict new coding regions with a very high degree of accuracy (92-98%).
Examples: GeneMark (http://opal.biology.gatech.edu/GeneMark/)
GLIMMER (http://www.tigr.org/software/glimmerHMM/)
GenScan (http://genes.mit.edu/GENSCAN.html)
GeneMark and GeneMark.hmm
Mark Borodovsky, Georgia Institute of Technology
http://opal.biology.gatech.edu/GeneMark/

GeneMark
GeneMark evaluates the protein-coding potential of a DNA sequence (within a sliding window) by using Markov models of coding and non-coding regions for various prokaryotic species. This approach is sensitive to local variations of coding potential, and the GeneMark graph shows details of the coding potential distribution along a sequence.

GeneMark.hmm
GeneMark.hmm predicts genes and intergenic regions in a sequence as a whole using hidden Markov models with a hidden state network reflecting the “grammar” of gene organization. It identifies the most likely parse of the whole sequence into protein coding genes (with possible introns) and intergenic regions.
Example of GeneMark Results

Source
http://bioweb.pasteur.fr/docs/genemark/images/cyay.gif
Protein-Protein Comparison

Dot Matrix
Use small window size (W1-3) and low stringency (S1-2).

Needleman-Wunsch (global)

Smith-Waterman (local)

FastA (heuristic)

BLAST (heuristic)

BLAT (heuristic)

Rules of Thumb
• Proteins that are more than 30% identical throughout their entire lengths are likely homologous.
• Proteins that are 20-30% identical throughout their entire lengths may or may not be homologous.
• Proteins that are less than 20% identical throughout their entire lengths are not likely homologous.
• Matches that are more than 50% identical in a 20-40 amino acid region occur frequently by chance.
Protein-Protein Dot Matrix Analysis \((W1, S1)\)

DNA Strider Settings
- **Vertical scale:** phage lambda cl
- **Horizontal scale:** phage P22 c2
- **Window size:** 1
- **Stringency:** 1
Protein-Protein Dot Matrix Analysis (W3, S2)

DNA Strider Settings
Vertical scale: phage lambda cl
Horizontal scale: phage P22 c2
Window size: 3
Stringency: 2
Motif
Uses a pattern derived from a number of known examples of a functional protein region. As this yields only a single consensus sequence, it is less accurate than the Profile or HMM methods.
Example: PROSITE (http://us.expasy.org/prosite/)

Profiles
Profiles are statistical matrices based on a family of known functional protein regions. They are more accurate than searching with a single consensus sequence.

HMM
Hidden Markov models can be used to create statistical descriptions of a functional protein sequence family’s consensus, which can then be used to accurately search for related functional domains.
Examples: Pfam, SMART (http://smart.embl-heidelberg.de/), HMMER (http://hmmer.wustl.edu/)

Other Resources
The NCBI (http://www.ncbi.nlm.gov) and the Center for Biological Sequence Analysis (http://www.cbs.dtu.dk/services/) maintain resources for identifying protein sequence features. In addition, Amos Bairoch maintains an extensive list of protein resources (http://us.expasy.org/ alinks.html).
CDD (Conserved Domain Database)
CDD is an NCBI database that contains conserved domains based on recurring sequence patterns or motifs derived from two popular collections, Smart and Pfam, as well as contributions from NCBI, such as COG. The source databases also provide descriptions and links to citations. Since conserved domains correspond to compact structural units, CDs contain links to 3D-structure via Cn3D whenever possible. Conserved Domains are indexed for retrieval by keywords; links between Conserved Domains and Proteins, PubMed, and Taxonomy have been added. Conserved Domains are also linked to other Conserved Domains by two different neighboring mechanisms. “Similar” domains are defined as those giving overlapping annotations on sets of protein sequences, “Co-occurring” domains are defined as those giving non-overlapping annotations on sets of protein sequences.

CD-Search (Conserved Domain Search)
CD-Search identifies conserved domains in a protein sequence by employing the reverse position-specific BLAST algorithm. The query sequence is compared to a position-specific score matrix prepared from the underlying conserved domain alignment. Hits may be displayed as a pairwise alignment of the query sequence with a representative domain sequence, or as a multiple alignment. CD-Search now is run by default in parallel with protein BLAST searches.

CDART (Conserved Domain Architecture Retrieval Tool)
CDART allows one to search for proteins with similar domain architectures. It uses precomputed CD-Search results to quickly identify proteins with a set of domains similar to that of the query.

Source
Kyte-Doolittle
A hydropathy plot that can indicate potential transmembrane or surface regions in proteins.
Accuracy: Scores -4.5 hydrophilic to 4.5 hydrophobic, poor for beta sheets (DNA Strider)

Chou-Fasman
A statistical approach to secondary structure prediction based on observed frequencies.
Accuracy: \(\sim 60\%\) (http://fasta.bioch.virginia.edu/fasta_www/chofas.htm)

PSA
A Markov model based approach to secondary structure prediction with detailed output.
Accuracy: \(\sim 70\%\) (http://bmerc-www.bu.edu/psa/)

JPred
A secondary structure prediction method based on a consensus of several complementary prediction methods, enhanced by multiple sequence alignment information.
Accuracy: \(\sim 70\%\) (http://www.predictprotein.org/)

PHD
A neural net based approach to secondary structure prediction involving jury decision between a number of neural networks.
Accuracy: \(\sim 75\%\) (http://www.predictprotein.org/)

Predict Protein
Combines a number of different methods, including JPred and PHD, to detect functional motifs, transmembrane helices and other regions of interest as well as predict protein secondary structure.
Homology Modeling
Builds a model of a protein based on homologies to proteins of known structure. Can produce good results when proteins with significant homology and known structure exist.

Threading
Compares the fitness of protein sequence to assume various known tertiary structures. It assumes a particular fold, then evaluates the quality of the resulting structure. Can identify distantly related structural homologs and verify homology models.
Examples: 3D-PSSM, I23D, PHD (http://www.predictprotein.org/)

Model Verification
Checks the fitness of a protein sequence to assume a modeled fold.
Examples: VERIFY-3D, PROCHECK (http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html)

Ab-initio Structure Modeling
Predicts a model of a protein directly from the sequence. To date, limited accuracy, but improving.
Examples: RAMP, ROBETTA (http://robeta.bakerlab.org/)
Homology Modeling, Step-by-Step

1. Identify related protein sequences (BLAST, FastA)

2. Align related protein sequences (CLUSTALW, CLUSTALX)

3. Construct model of core (use conserved regions of existing structure or sequence to form core)

4. Construct model of loops (use known loop conformations or predictions)

5. Construct model of side-chains (use known rotamers or predictions)

6. Evaluate model (PROCHECK, Verify-3D)
Protein BLAST Algorithm Illustrated

- **Query sequence of length** L
 - Generate a maximum of $L - W + 1$ words of length W

- **Match**
 - Look for exact word matches in the database sequence

- **Find Word Pairs**
 - Look for two non-overlapping matches which are contiguous or within a certain distance, A

- **Database sequences**

- **Extend**
 - For each match, extend in both directions until the score drops below a dropoff value, X

- **HSPs**
 - Find High Scoring Pairs, extended alignments that score higher than a cutoff value, S
MMDB (Molecular Modeling DataBase)

MMDB is the NCBI protein stucture database. It consists a subset of experimentally determined three-dimensional structures obtained from the Protein Data Bank (PDB) which have had errors and ambiguities removed, and then were converted to ASN.1 (Abstract Syntax Notation 1) format. The data is available thru Entrez or the free Cn3D 3D structure viewer. MMDB currently contains over 10,000 structure records, with approximately 80% of the structures determined by X-ray diffraction studies, the rest by NMR or other experimental methods. Links are provided to Medline records and the NCBI taxonomy databases. Related sequences are provided by BLAST, related structures are provided by VAST.

VAST (Vector Alignment Search Tool)

The structural data of proteins in MMDB are compared against each other using the VAST algorithm for detecting significantly similar substructures. Entrez or Cn3D can be used to retrieve structures which seem highly similar to the query protein structure, in much the same way as sequence neighbors computed by BLAST. This will retrieve almost all structures with an identical 3D “fold”, even in distantly related proteins, though it may occasionally miss a few or report chance similarities.

VAST functions by reducing x, y, z coordinate data for all alpha helices and beta sheets in a protein into vectors, then creating pairs of vectors called secondary structure elements (SSEs), which it attempts to superimpose. It is a heuristic approach, not an optimal one, and loses some information by converting substructures to vectors, but is extremely fast.

Cn3D
Cn3D “See in 3D” is an excellent free 3D molecular structure viewer from the NCBI. It views MMDB ASN.1 formatted files. Cn3D may provide a more useful first image of a structure than RasMol, and is under active development by the NCBI.

Cn3D 4.1 for OS X

1) Drag Cn3D to Applications folder
2) Internet Explorer ➔ Preferences ➔ Receive Files ➔ Helper Applications ➔ Add...
3) Description: NCBI Cn3D Extension: .prt MIME type: chemical/ncri-asn1-binary
 Application: Cn3D File type: CN3D File creator: Cn3D
 Encoding: Binary Data How to handle: View with Application Application: Cn3D
5) Select Open With Cn3D

Introductory Tutorial to Cn3D
http://www.geospiza.com/outreach/structure/